# fluid dynamics

## Two dimensional turbulent jet -- part 2

Continuing on with the analysis of turbulent flow in a jet issuing out of a small slit running along the x-y axis with length (in the y-direction) W and basically no width. The flow issues forth in the positive z direction into a semi-infinite reservoir of stationary fluid (same fluid …

tags: fluid dynamics, jet,

## Two dimensional turbulent jet -- part 1

Moving into turbulent flow now, I'm going to look at a jet issuing out of a small slit running along the x-y axis with length (in the y-direction) W and basically no width. The flow issues forth in the positive z direction into a semi-infinite reservoir of stationary fluid (same …

tags: fluid dynamics, jet,

## Visualizing transient laminar pipeflow

In a previous post I derived some equations for the velocity distribution as a function of time in transient pipe flow. Here it is visualized by Sage.

The Sage code is as follows

import mpmath as mp
xi, tau = var('xi tau')

def phi(xi,tau,n):
sum = 0
for …

tags: fluid dynamics, pipe flow,

## Startup of laminar pipe flow

I've spent a fair bit of time examining various kinds of pipe flow, but so far only at steady state. This time I take a kick at the transient flow cat, looking at start-up of laminar pipe flow (Transport Phenomena 4D.2)

Suppose the same old cylindrical coordinates, assuming incompressible …

tags: fluid dynamics, pipe flow,

## Flow through a porous medium, with pipes!

Flow in and around pipes is old hat at this point, so to keep things fresh what about flow through porous medium, into a pipe? (Transport Phenomena 4C.4)

Suppose fluid is coming in through the walls of a pipe, say a ceramic tube with a pressure at the outside …

tags: pipe flow, fluid dynamics,

## The pressure field around a bubble

Previously, I figured out the velocity field for creeping flow around a bubble, and made a nice graphic to go with. This time I solved through for the pressure field, and this is what it looks like (along the plane y=0, gauge pressure, all other constants 1)

The derivation …

tags: fluid dynamics, creeping flow, gas,

## Creeping flow around a bubble

When fluid flows around a gas bubble, circulation within the bubble dissipates energy away from the interface and the interfacial shear stress is reduced. In this problem (4B.3 Transport Phenomena) I look at what happens when that shear stress is negligible.

Flow is coming up along the positive z-axis …

tags: fluid dynamics, creeping flow, gas,

## time and space dependent velocities: the case of suddenly applied wall stress

Previous examples in fluid mechanics assumed steady state. This time lets try something else and imagine a simple non-steady state scenario. Imagine a semi-infinite fluid bounded by a wall at y=0, what happens if the shear stress at the wall undergoes a step-change, at time t=0, to some …

tags: fluid dynamics,

## From Newton's Second Law to the Equations of Change for a fluid

Most often when you see the derivation for the general form of the equations of change for fluid dynamics it is done by considering some differential element. What follows is a way of arriving at the same result by considering Newton's second law for an arbitrary volume of fluid moving …

tags: fluid dynamics,

## Using the Bernoulli equation to derive Toricelli's equation

Bernoulli's equation for fluid flow along a streamline is a really useful go-to equation for explaining various fluid mechanics phenomena, and if you extend it by taking into account friction you end up with the engineering Bernoulli equation or a mechanical energy balance, which is practically the default starting point …

tags: fluid dynamics,

## Flow constrained by concentric spheres

The last few flow problems I toyed with used a simple momentum balance as the starting point, time to move on to other ways to solve flow problems such as the continuity equation and the equations of motion for the fluid (e.g. the Navier-Stokes equations ).

Today I'm going to …

tags: fluid dynamics,

## Not no-slip -- low density gas flow

Continuing on with tube flow, what happens when the fluid moving through the tube is low density and thus the no-slip boundary condition breaks down? (from 2B.9 Transport Phenomena)

I want the mass flowrate for a low density gas moving through a tube in slip flow.

First off we …

## Liquid in and on pipes

One of the nice things about setting up the math for simple fluid flow problems is that you can recycle the initial bits for various other uses. If you set up a balance based on a particular geometry of a differential volume then a wide variety of possible flow cases …

tags: fluid dynamics, pipe flow,

Page 1 / 1